SPIT HC6-15

DESCRIPTION

Temporary fastening of steel sheets for steel decking

PROPERTIES MATERIAL

- Shank in carbon steel
- Electrogalvanised, min zinc coating 5 μm
- Hardness: 53 to 56 HRc

TOOL

PULSA 40P+ / PULSA 65 / PULSA 27

APPLICATION LIMIT

Steel

Thickness of base material (mm)

- (1) French designation (2) German designation
- (3) Designation according to European standard NF EN 10027-1

Ultimate tensile strength of base material (N/mm²)

DESIGN & RECOMMENDED LOADS

The performances given below, are suitable for a resistance of base material lower than 550 N/mm² and with a minimum thickness of 5 mm.

Sheet thickness (1) f _{uk} > 390 N/mm ² (5320GD)	Hnom min (mm)	Design resistance [kN]		Recommended load [kN]	
		Tensile	Shear	Tensile	Shear
(332000)		N _{Rd}	V _{Rd}	N _{Rec}	V_{Rec}
0,75 mm	6.5	2.25	1.80	1.5	1.2
1,00 mm					
1,25 mm					

 $F_{rec} = F_{Rk} / 2.5$: the recommended load is caculated from the characteristic load and a global safety factor equal to 2.5.

Design load is calculated with a safety factor $\gamma_F = 1.5$.

